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The p function in higher covariant derivative regularisation 

S Thomas? 
Department of Mathematics, King’s College, Strand, London WC2, UK 

Received 2 May 1986 

Abstract. We regularise a Yang-Mills theory coupled to matter by higher covariant deriva- 
tives (HCD) supplemented by dimensional regularisation. Details of its renormalisation 
are given. The value of the one-loop /3 function is computed and is found to agree with 
that of other regularisation schemes. We show to all orders that the /3 function is determined 
by the interactions of the original unregularised theory. The consequences that these results 
have for other regularisation schemes employing HCD is also discussed. 

1. Introduction 

In recent years, interest has been revived in higher covariant derivatives (HCD) as a 
possible method of consistently regularising the ultraviolet divergences of four- 
dimensional field theories, whilst at the same time preserving supersymmetry [ 11. For 
a gauge theory however, such a scheme is incomplete with certain one-loop diagrams 
having a degree of divergence 20 .  Therefore a secondary regulator has to be introduced 
to deal with these divergences and it usual to choose Pauli-Villars (PV). Indeed one 
can introduce the fictious Pauli-Villars fields into the theory in such a way as they 
only contribute (and thus regulate) one-loop diagrams. That one can do  this whilst 
at the same time maintaining gauge invariance is not obvious but has been shown to 
be the case [2]. 

This latter scheme has been generalised to the case where it does preserve supersym- 
metry [3]. The resulting regularised action is written in terms of background superfields, 
and is rather more complicated than the non-supersymmetric case. 

In this paper we study Yang-Mills theories including matter, where the regularisa- 
tion scheme employs HCD and dimensional regularisation ( D R )  as the secondary 
regulator. Although dimensional regularisation is a ‘complete’ regulator by itself we 
only use it to regularise those one-loop (sub)graphs that are divergent even in the 
presence of HCD. Moreover calculations carried out using HCD and DR are much 
simpler than using Pauli-Villars as the secondary regulator. 

We show how renormalisation is proved using the Ward identities of BRS transforma- 
tions. Although Day [4] has analysed renormalisation for the HCD-PV scheme we 
adopt a somewhat different approach in dealing with potential anomalies that arise in 
the gauge Ward identities. 

The main part of the paper then deals with the calculation of the one-loop p 
function, in the HCD-DR scheme. There seems to be an absence from the literature of 
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1678 S Thomas 

explicit calculations involving HCD and two-regulator schemes in general. We therefore 
give a detailed interpretation of our results and in particular we prove to all orders 
some model-independent properties of HCD regularisation. 

The paper is ordered as follows. Section 2 gives the details of renormalisation in 
the HCD-DR scheme. Section 3 contains the results of explicit one-loop calculations to 
determine the p function and the conclusions we draw from them. 

2. Renormalisation in the HCD-DR scheme 

Higher derivative regularisation [ 51 is implemented by adding to the classical action 
( l /A2)d4+(  l /A4)d6+ . . . kinetic terms for bosonic fields and (1 /A2)d2d+ ( l/A4)d4d 
+ . . , kinetic terms for fermionic fields. In a gauge theory, one replaces a, by the 
appropriate covariant derivative (and for supersymmetry, background covariant super- 
space derivatives [ 3 ] ) .  This results in an improved asymptotic behaviour in the field 
propagators. 

Apart from certain one-loop (sub)diagrams, all Feynman graphs are regulated by 
this procedure. To deal with the remaining (sub)divergences one introduces a second 
regularisation scheme. 

We will consider a general Yang-Mills-fermionic matter theory that is regulated 
by HCD and dimensional regularisation. For the purpose of proving the renormalisabil- 
ity of this model one defines the action in d = 2w dimensions, so that at the outset one 
is dealing with an action that regulates the ultraviolet divergences in the theory. The 
action including gauge fixing and ghost terms is 

2 being dimensionless. 

Notice in (1) that we have not included HCD in the fermionic fields, because it turns 
out that the HCD in the gauge fields are sufficient to regulate all but a few diagrams 
with internal fermion lines and the ones that remain unregulated are not improved by 
the addition of fermionic derivatives [ 5 ] .  Also we have not included HCD in the ghost 
fields but have instead adopted an equivalent procedure and introduced them into the 
weighting function that appears in gauge fixing. We note that supersymmetry would 
demand the introduction of HCD to boson and fermion fields alike; we will say more 
about this in Q 3 .  

The overall degree of divergence of an arbitrary L-loop diagram can easily be 
computed from the interactions in (1): 

D,,,U = 6  - (2w - 6 ) L  - $ E f -  2Egh - n3 - 4 n ,  - 5n7 - 6n8 - nf  - ngh (2) 
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where in (2) Er, are the number of external fermion and ghost lines, n, = number 
of r-point gauge vertices, nr = number of gauge fermion vertices and Tlgh the gauge-ghost 
vertices. It is clear that for 2 0  = 4, L L 2, D.4,u e 0 so that all L 2 2 loop diagrams have 
their overall divergences regularised by HCD alone whilst at L= 1 analyticity is 
maintained for sufficiently small 0 < 2. 

The complete ultraviolet divergence of a diagram consists of an overall divergence 
(measured by power counting), when all of the loop momentum became hard as well 
as various subgraph divergences which occur when subsets of loop momentum become 
large, whilst the rest remain fixed. From (2) we therefore see that the only source of 
divergence in an L 3 2 diagram comes from certain one-loop subgraphs. 

We now wish to discuss the renormalisation of the theory described by (1). It will 
be assumed that the Weyl fermions $ are in suitable representations of the gauge group 
so as to cancel the chiral anomaly. Day [4] has shown the renormalisation of (1) using 
HCD and PV by assuming certain properties of the theory when regularised by DR go 
over to the HCD-PV regularised theory. There does not seem any a priori reason for 
this and we will show here that renormalisability follows without these assumptions. 
Our argument holds equally for the HCD-PV scheme. 

The basic tools one needs to show renormalisability are the gauge BRS ward identities 
along with the ghost equation of motion. The action (1) (apart from sources) is 
invariant under the following BRS transformations: 

SA," = ( ~ @ V ) " E  

Introducing the terms 

Tr / d2"'x[ K , ( 9 p v )  - f L ( v  0 v)g  + ig( Nv"T"$ + &v"T"M)] 
C,( G) 

into ( I ) ,  the transformations (3) imply that the effective action T(A, ,  4, 6, 7, i j ,  a,  
y,K, L, N, M ) ,  which is defined such that 

etc. -- - J," 
81' 

SA,, 

(4) 

satisfies the Ward identities 

From now on we think of the fields A P n .  . . vu,  as being phenomenological fields having 
the same transformation properties as those of the classical theory, but which minimise 
the full quantum action r. The i j "  ghost equation of motion is 

(d,S/SK," - S / S i j " ) I ' = O .  (6) 
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The index a runs over the dimension of the fermion representation of the gauge group 
G .  Note that for calculational reasons the r appearing in (5) and (6) has the gauge 
fixing term removed (as is standard practice) which implies the homogeneous form of 
the identities ( 5 ) ;  it can be reinstated at the end of manipulations without changing 
the results [6]. Therefore r = So(A, w )  + O( h ) .  

To proceed one expands r perturbatively in A and separates the finite and infinite 
parts 

Now by gauge invariance and power counting rgjV can only have three types of 
infinities; 1 / ~ ,  (l /E)(ln A / p ) '  and (In A/p)'  where p ,  q are integers 3 1  and p is a 
renormalisation mass. It is clear from the linearity in r of the identity (6) that I'giV 
and rghlTE separately satisfy it. This is also true of ( 5 )  for the ( l / ~ ) ,  ( l / & ) ( l n  
type divergences in I"n), but not necessarily so for the (In Alp)'  type, as pointed out 
by Day [4]. This can be seen if we look at, say, the O ( h )  identities in ( 5 ) :  

(so * rgiv+ so * r:II)NITE+r-sO) =o.  (8) 

Since So contains l / h 4  factors in the HCD terms (denoted by SrCD) these can multiply 
ln(A/p)  infinities in I'gjv yielding finite results that could cancel with those of the 
second term in (8). Hence the split (7)  is ambiguous. Day argues that, in the d = 4  
case, such dangerous terms cancel because they are of the form 

8srCD srgiv HCD - 
a - SBRSSO - 0 SA," SK, ( 9 )  

where from theories employing dimensional regularisation, Kc")/ SK," a ( 9,~)"  is 
known to be true. However this does not seem to us to be the correct argument because 
there is no reason why the results (9) found using dimensional regularisation should 
transfer to other regularisation schemes. Moreover in the more general situation of 
having HCD in the fermionic terms (e.g. if we wish to preserve SUSY), the dangerous 
terms in the O ( h )  WI would now be 

sr;iv ~ s : ~ ~  sr& sr;lv +-- +-- 
SA," S K p ,  SG" SM" S+" SR" ' 
-- 

For this to vanish by gauge invariance as in (9) we would not only require 

but also that they all have the same ln(A/p) infinity. There does not seem to be any 
a priori reason for this conspiracy to occur at one loop, quite apart from higher orders. 

In fact one can argue that it is not necessary to use the action So (which includes 
SrcD) in order to prove renormalisability. Renormalisation based on (So- SrCD) is 
consistent if there are no ( 1 / ~ )  ( lnA/pY or 1 / ~  infinities proportional to the HCD 

terms in r("). Pure In ( A / p )  type infinities are permissible, since they yield finite results 
in the A + 00 limit when multiplied by the overall l / A 4  factors occurring in SOHcD, 

The reason for the absence of these infinities is exactly analogous to the absence 
of l n (pp /p )  and (In pp/p)( ln infinities proportional to HCD terms in the HCD-PV 
scheme ( p p  is the Pauli-Villars mass), and so we refer the reader to [6 ]  for details. 
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Let Xo be the action (1) plus BRS sources but with the HCD and gauge fixing terms 

(12) 

removed: 

I;, = so - SOHCD. 

Now if r:jv is pure ln(A/p)  divergent then (13) implies 

(x, * rgiV) = o (14) 

where ( ) in (13) and (14) indicate symmetrisation, whilst for ( 1 / ~ )  and mixed 
divergences in I'giv, (8) is satisfied. 

We define the renormalised action S!') in the usual way: 

(15) $ 1 ) =  s -r(l) 
0 DIV. 

It is clear that S:" generates finite r(') but does not satisfy the WI ( 5 )  for the reasons 
mentioned. However the quantity 

I;, - rgv (16) 
does satisfy them up to O ( h 2 ) .  We can make it satisfy ( 5 )  exactly by adding to (15) 
a term Q of order h to cancel the term rgiv * rglv. To show that such a Q exists it 
is not necessary to directly calculate it, but to solve the identities (14) and (6) for r&. 
The existence of Q is then proven if (16) can be written as a renormalisation of the 
parameters in I;,, since Q will then be the O( h 2 )  terms in the expansion of I: i n terms 
of the renormalised fields and coupling constants. 

The inductive proof of renormalisability assumes that one has defined 

S+ s,-rgv- . . . -r',":v+o(hn+i) 

= S 0 ( A F , .  . . , $I) 

where S,(AE, . . .) generates finite r"), . . . , I""). In (17) the bare quantities A:, +, etc, 
are related to the renormalised ones through the usual relations 

AFa = Z31'2Aru 
6. = Zql/2*" 

(2 ,  * rgA1)) + (SOHcD * Fg;)) = o 
etc. Z, ,  Z,, . . . contain the O( h " )  divergences. The O( f i n + ' )  WI ( 5 )  then gives 

(18) 
where in (18) ?g&') are the 1 / ~  and mixed divergences of r("+'). Since as mentioned 
earlier FgA') does not correct SyCD, both terms in (18) must separately vanish. One 
has to solve for rg&') in (13) with I'g/v replaced by l?g&'). The most general solution 
is [7] 
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In (19), 2'(AG, I&$) is any gauge invariant function of the fields A,, $4 4, having 
dimension (4-2w). a, b, c, d are constants containing the various infinities in r("+'). 
Without loss of generality one can write 3 ( A F ,  6, +) by homogeneity as 

Hence, it follows that 

xc++"=xg)(A;, . .  . if)-","~"+o(h"+2) 

= xo(A;,. . . iff, 
where in (21) the bare quantities are A: = (Zi)"2A,,  with (Zi)1'2 = ( Z 3 + a  +u/2)'/* 
and so on, while Xh:) is Sl"' - SOHCD. 

As it stands, the renormalised action on the LHS of (21), although containing the 
counterterms to O( f i n + ' ) ,  does not contain StCD and so does not regulate r'"). 

We remedy this by adding SrCD to Xi:+'): 

Sy+l) = S y C D + x h g + 1 ) *  (22) 

(SOH=* * xi;+')) = 0. (23) 

Since SOHcD * SyCD = 0 and 8b:*') * 2b:+') = 0 by (21), then S?+') satisfies the WI ( 5 )  if 

From our knowledge of Xg+'), (23) is just another way of writing the gauge invariance 
of SOHcD. Notice, as promised earlier, we have obtained this result without having to 
appeal to another regularisation scheme. The Ward identities with So replaced by Zo 
are strong enough to prove renormalisability, and hence to derive a renormalised and 
regulating action .$?+I) which itself satisfies the Ward identities. 

3. Calculation of the one-loop f? function 

In this section we give the results of explicitly calculating the one-loop p function for 
the theory given by (1). Let us mention that to calculate the one-loop p function for 
supersymmetric theories, we could use RDR as the secondary regulator. Clearly, 
however, at this order in perturbation theory the results would not differ from those 
obtained using DR as the secondary regulator. 

As mentioned in the introduction there is an absence from the literature of explicit 
calculations involving HCD in ordinary gauge theories and so one may regard the 
results presented here as not only a test of the combined HCD-DR system, but also of 
HCD themselves. Although the one-loop p function for supersymmetric theories in 
superspace regulated by HCD and PV has been carried out [3], the regularisation scheme 
here was 'implicit' in the sense that the p function was determined by D algebra and 
group theory alone, no momentum integrals being computed. To begin with we must 
determine the dependence of /3 on the renormalisation coefficients of a gauge theory 
which employs two regulators, in our case HCD and DR. As is usual we will use the 
A,"ijPqY vertex to define the bare gauge coupling constant go: 
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where in (24)  Z:I2,  Zi’2 are the A,= and wavefunction renormalisations, whilst 
Z l g r  is the A,” i j ,~  vertex renormalisation, gr being the renormalised coupling constant. 

p ( g r )  = P%( (25)  

where ĝ  is dimensionless and p an arbitrary renormalisation mass. Writing g = ic12-w, 
we obtain for the HCD and DR scheme: 

p ( g r )  is defined as 

ap fixed .&d,.j. 

We have derived this equation by taking pS/Sp of go at fixed g, &, $, where 0 refers 
to bare parameters. 

from dimensional 
regularisation, there is also a dependence through ln(A/p) divergences in the 2 
coefficients. Equation (25)  can be rewritten as 

Notice in (26) that, apart from the usual p dependence of 

Now at one loop there are no mixed ( 1 / ~ )  ln(A/p)  divergences, so one can see that 
the only divergences contributing to the first term in (27) are those of 1 / ~  since the 
quantity E In(A/p) vanishes in the ordered limit E +O; A+m. 

From now on we will take Green functions of the physical theory to be defined in 
this ordered limit. Therefore the first term in (27) is just the usual expression one 
obtains in dimensional regularisation. Similarly, only In A / p  divergences contribute 
to the second term in (27).  If we expand the coefficients Z1, Z 2 ,  Z3 as 

Z3 = (1 + a 3 / ( 2  - to)+ b3 ln(A/p)2+ . a )  

2, = ( 1  + a2 / (2  - U )  + b2 In(A/p)’ + . . .) 
2, = (1 + a I / ( 2 - w ) +  6, ln(A/p)2+ . . .) (28) 

then we arrive at an expression for P 

p ( i r )  = ( i r )2(ai  - ;a;  - U ; )  +2 i , (  6 ,  -4b3 - b2). (29)  

In (29),  ’ denotes differentiation with respect to 2,. We see that the p function of the 
two-regulator system is just the sum of p functions for each regulator. To compute it 
at one loop we have to determine the constants a, . . . 6 3  at that level. The graphs 
contributing to the a and 6 coefficients are listed in appendix 1, together with relevant 
momentum space Feynman rules. We find it convenient for later discussion to split 
each vertex into its HCD and non-HcD parts, the former being indicated by 0, the 
latter 0 at each vertex. One can see from the Feynman rules that the calculation of 
even one-loop diagrams is considerably complicated by the presence of HCD terms. 
These rules are calculated for a theory involving HCD in the gauge fields only, since 
as mentioned in 0 2 naive power counting is not improved by their inclusion in other 
fields. 

In computing the p function we will only be interested in those corrections to the 
non-HcD part of the gauge kinetic term which determine the value of Z,; the diagrams 



1684 S Thomas 

in the appendix also give corrections to the HCD parts but these can be thought of as 
renormalisations of parameter y (see (1)). 

The results are set out in table 1, the details of which we will now discuss. Firstly 
the functions A‘( k), B‘( k) which appear in the coefficients a3 and b3 are quadratic 
in external momentum k,,, where the label T refers to the coefficient of the k26,,, part. 

Table 1. Overall factors of (g/4v)’ are suppressed. 

We have not computed these because, as we shall now show, they d o  not affect the 
one-loop p function. The corrections A come from graph I I ( f )  in appendix 1. This 
graph has two HCD vertex insertions and by power counting is divergent with respect 
to E. In determining its 1 / ~  pole we find the result is proportional to 

for n = 1 and 2. 
From (30) we see that not only are there 1 / ~  divergences in II(c) but also a In(A/p)* 

has emerged from expanding about w = 2. In non-HcD theories one obtains a In( p 2 / p 2 )  
in this way which lead to on-shell infrared divergences. Here we find ln [ (p2+A2) /p2 ]  
instead, which for A z + ~  yields a ln(A2/p2)  divergence that has to be subtracted from 
the theory. The point of interest now is that looking at (30) we find that the residues 
of 1 / (2 -w)  and In(A/p)* are related by a - sign. Moreover (30) is the only source 
of In(A/p)  and 1 / ~  divergences in I I ( f ) .  Therefore from the explicit expression for 
the p function, (26), we can see that contributions from the ln(A/p) ’  and 1 / (2 -w)  
poles in I I ( f )  cancel at the one-loop level. We find exactly the same phenomenon 
occurring for the graph II(b), where again calculation reveals a hidden In(A/p)’ 
divergence that exactly cancels with the 1 / ( 2 - w )  pole in the p function. We have 
labelled these corrections B ( k )  in table 1. 

The next observation we make from table 1 is that graphs II(d, e )  and III(b), which 
we would expect to be A-divergent, are in fact finite. To understand why this should 
be the case we have to understand the origin of l n ( A / p )  divergences in diagrams that 
are regulated by HCD only. For these diagrams loop integration can be evaluated in 
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d =4, the result of which is of the generic form: 

In (31) X, are a set of Feynman parameters, g1 , g2 and H are functions, g,  , g2 being 
linear, (Y is some integer and k, is the external momentum. (Note that we evaluate 
diagrams 111 at zero gluon momentum.) We know by power counting and gauge 
invariance that, if divergences occur in (31), they are logarithmic and hence given by 
those parts of H proportional to A'". If we then look at leading-order terms in (31) 
in an expansion about A = CO we find it is given by a A-independent integral over some 
function H Z a ,  say, of the Feynman parameters which is local in the momentum K. 
When A divergences occur they manifest themselves as singularities in this integral 
which gives terms like h(XK )I:. It is interesting to contrast this situation to dimensional 
regularisation in which E poles appear in the expansion of I-( -n + E ) ,  n > 0 ,  where 
the leading-order term ( ( - l ) n / n ! ) n ( l / E )  is dependent on E. 

The reason for these different behaviours is due to the dimensionality of A. However 
we can smuggle a A dependence into the poles in X, 1;. This is achieved by smearing 
the limits 1 ,0  with test functions g(A, p ) ,  h ( A ,  p ) .  We then demand that g ( A ,  p )  be 
analytic in A as A+m, and that its limit function be 1. Therefore, without loss of 
generality we can expand g in powers of the dimensionless quantity ( p / A ) ,  and 
similarly for h, whose limit function is taken to be 0. It is not difficult to prove that 
by doing this the lnXKIA poles are transferred to ln(A/p)  poles as A+co,  and more 
importantly that the residue is independent of the coefficients in the Taylor expansion 
of the functions g and h. We may then feel satisfied that these manipulations render 
unique results. 

Now for graphs II(d, e )  and III(b) we can calculate the quantities g,, g,, H Z n ,  
and a; each time we find that the leading-order terms in (31) involve dXK lnf (XK)  
where f(X,) is some linear functions of X ,  that takes on the values of 1 or 0 at the 
limits. Such integrals are always regular. Hence for these graphs, the A + a? limit is 
regular. 

The net result of all this at the one-loop level at least is that the p function is 
completely determined by graphs which only include the original non-HcD vertices of 
the theory. The infinities in these graphs are extracted straightforwardly and they 
complete table 1. Let us mention at this point that graphs I1 contain A' divergences, 
which for separate graphs are non-zero. These are present in HCD regularisation due 
to the dimensional nature of A. However gauge invariance demands that they cancel 
in the complete one-loop correction. 

The values of a i ,  b, are determined to be 

a,  = O  a 2 = 0  a3 = (+A - 2B'- 2 A ' ) c ~  -$CF 
b, = -yC A b2 = -iCA b 3 = ( + E + 2 B ' + 2 A ' ) C A .  (32) 
In (32) we have suppressed overall factors of (2,/47r)'. Substitution of (32) into (29) 
gives the standard result: 

Although p functions calculated in different regularisation schemes need only be 
equivalent up to the addition of finite local counterterms, such insertions do not change 
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the one-loop p function which should therefore be regularisation scheme independent. 
Our result is therefore consistent with this. 

At this point we note that there is a consistency check on the mechanism which 
gave rise to cancellations of certain residues in the one-loop p function. By gauge 
invariance the Ward identities of the previous section imply that corrections to the 
non-HcD gauge inverse propagator should preserve the projection operator structure 
K26,, - K,K,,  for an arbitrary gauge choice a. For the two-regulator scheme this 
structure has to emerge in each of the two types of infinity. Therefore we have 

( rl +A‘+ B‘) ln(A/p)2 = - ( r2+  A L +  B L )  l n (h /p )2  

and 

1 1 
( r 3  - A ’ -  B‘)-= - ( r 4 - A L -  B L ) -  

(2  - U )  ( 2 - U ) ’  (33)  

In (33) the terms on the LHS are proportional to k26,, and those on the RHS to k,k,. 
AL,  B L  are just the k,k, terms in the functions A ( k ) ,  B(k). r ,  . . . r4 are corrections 
that come from 0 and mixed 0, 0 insertions, in the notation of appendix 1. Equation 
(33)  implies the following constraint among the r :  

( r ,  + r3)  = -( r2 + r4).  (34) 

One can obtain the values of rl . . . r4 from table 1 and check that this constraint is 
indeed satisfied. 

As we have previously mentioned supersymmetry requires the introduction of HCD 

for fermionic fields in the theory. It is therefore instructive to add such terms for the + and 7 fields to the action (1) and to calculate the one-loop p function as before. 
The results of calculating the divergent parts of two- and three-point functions are 
given in table 2. The quantities A, B, C, 0, E, all quadratic functions of external 
momentum, have not been determined because as before their contributions cancel 
out of the p function at this order. With the results of table 2 we also conclude for 
this theory that the one-loop p function is completely determined by diagrams with 
the original (0) vertices in the theory, What is interesting here is that such diagrams 
are completely regulated by A, and so the effect of the secondary E regulator drops 
out of the p function. 

One can check that table 2 gives ai, bi coefficients that again give the standard 
result for p(&) .  

Once more we can use the gauge Ward identities to provide a consistency check 
on the ‘cancellation mechanism’ that occurs for each of the terms A, B, . . . , E. From 
the transverse and longitudinal parts of the coefficients A , .  . . , E we can derive a 
constraint as in (34).  In this case r4= r3 = 0 ,  which implies that the sum of graphs I1 
(a,  c, h )  preserve the projection operator structwe of the inverse propagator. This is 
indeed verified by table 2. 

It is natural to enquire whether this calculational result, that only (0) insertions 
into one-loop graphs affect the one-loop p function, generalises to higher orders. This 
turns out to be the case and a proof is given in appendix 2. The proof uses Weinberg’s 
theorem [9] and also incorporates the cancellation mechanism between 1/(2 - U )  and 
ln(A/p)2 residues in the p function, which we observed in our one-loop calculations. 

HCD, unlike what one might term ‘passive’ regularisation schemes such as 
dimensional regularisation, BPHZ and Pauli-Villars (which do not significantly alter 



Higher covariant derivative regularisation 1687 

Table2. Factors of ( g / 4 ~ ) ~  suppressed. We have compacted the notation in table 2 as 
follows. Factors of 0' following a graph mean i insertions of the vertex 0 into the graph 
in all possible ways. 

~~ 

Group 
Graph Divergence x 1 / (2  - U )  Divergence x In(A/p)' factors 

CAS'-D 
CAS'-@ 

the original theory) change the interaction structure quite radically in gauge theories. 
We have shown however that the p function is determined by the interactions of the 
(unregularised) original theory. It is therefore reassuring to know that in calculating 
observable quantities like the p function HCD behave more like passive regulators. 

We close this section by considering some consequences of our results. It is apparent 
from appendix 2 that some of our results of 0 3 are not specific to the HCD-DR scheme 
but to HCD in general. In particular the result that graphs with 0 insertions and whose 
overall divergence is regularised by A d o  not correct p, remains true for the HCD-PV 

scheme. If one could show that the same was true of graphs with overall divergence 
regulated by PV (perhaps by a similar cancellation to the one occurring for HCD-DR,  

then our conclusions would hold in this regularisation scheme also. We have not 
verified that such cancellations occur for HCD-PV as the necessary calculations are 
rather complicated, so more work is required. 

Interestingly our conclusions d o  not apply to a theory regulated by HCD and 
regularisation by dimensional reduction [ 113. This is because the presence of &-scalar 
loops within diagrams can yield factors of E that can cancel with double poles of the 
type ( I n ( A i / p ) ) l / E  and hence contribute to the p function. No cancellation mechanism 
can occur here because we would require the presence of 1 /&  poles which by our 
previous arguments are absent. Considering, however, the other difficulties surrounding 
R D R  [12], we d o  not regard this situation as problematic. 

From a practical point of view we have shown that p-function calculations in HCD 

regularisation schemes are considerably simpler than one would naively anticipate 
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from the interactions of the regularised theory. This, together with their ability to 
preserve manifest supersymmetry, in our opinion makes such schemes worthy of further 
study. 
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Appendix 1 

The Euclidean momentum space Feynman rules are (for the choice y = 1 ) :  

SFvSap yd = -  [a = 1 gauge]. 
K2(1+A-4K4)  

L J  

( A l . l )  

(A1.2) 

(A1.3) 

(Al.4) 
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(A1.6) 

(Al.7) 

a ’b 

In (A1.5) [[ ISYM means symmetrisation under the interchange of the triplets (a, p, p); 
(B, v, 9) ;  (7, P, r ) ;  (4 U, s). 

Diagrams contributing to the coefficients ai ,  6,; i = 1 . . . 3  are 

I -- n-- I ( a ]  
\ ‘--.’ 

I11 

Appendix 2 

Here we want to give a proof of the statement made earlier in the paper that graphs 
containing mixed 0 and 0 insertions at one loop do not correct the p function, the 
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same being true for any number (>O) of 0 insertions for La 2 loops. 

0 insertions along with 
At one loop we will be interested in those graphs of appendix 1 with both 0 and 

+ Q - 0  

+ - -  . . . .  

, c .  L ,  , H .  L ,  

(A2.3) 

(A2.4) 

To be quite general we will take the degree HCD present in the fields A,, 6 and 7)  to 
be Pi,  i = 1,2,3.  Up to now we have chosen PI = 4, P2 = P3 = 0. Propagators will 
typically have denominators of the form 

[ K 2 (  1 + A-''Kq)]-' (no sum on i ) .  

which we can rewrite as 

A 
K ~ ( A ~ ~  + K ~ ~ ) '  

Since we are interested in the A + c o  limit we keep track of the power of A in the 
numerators of the relevant graphs by introducing the quantity Q for each graph defined 
as 

Q = Pili - PiVi (A2.5) 

where in (A2.5) I, is the number of internal lines of species i, and V ,  for i = 1,2,3 are 
the number of vertices in a graph originating from the new HCD terms we add to the 

i 
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action in the fields A,, +, 71 respectively. We take Pi to be even, so that we can factor 
the term (AT + K y )  in the propagators as a product of terms like (K2*iA2). One can 
therefore introduce (fP, + 1) Feynman parameters { x , }  for each such propagator occur- 
ring in a graph. 

To begin with we will prove the one-loop statement. The result of computing a 
general one-loop momentum integral has the form 

(A2.6) 

In (A2.6) {k} represents a set of external momenta, p a renormalisation mass, g , ,  g2 
are some functions and a runs from 1 to N where N is given by 

N =C (;Pi + 1)Zi - 1. (A2.7) 

By power counting, a 2 f Q  with the divergent parts of (A2.6) coming from the 
equality. In the limit A + CO we will only be interested in the X, dependence of the 
functions H and g ,  . At the one-loop level g ,  is a linear function of a subset {X,,} of 
the X, where a' runs over (ZifPi) independent values of X, .  The X ,  dependence of 
H comes from the shifts in loop momentum carried out in computing the integral. It 
is therefore given by 

L" ( X a  1 (A2.8) 

where n is an integer ranging from 0 to the mass dimension of H, and L(X,) some 
linear function of X,. The leading-order term as A + C O  of (A2.6) is 

i 

(A2.9) 

As mentioned previously, divergences in A manifest themselves as logarithmic terms 
that appear as a result of computing the integrals in (A2.9) and which diverge when 
evaluated at the limits. Such terms can only occur if the inverse power of the linear 
terms in XQ. in (A2.9) is equal to a max, i.e. $Zipi. However (A2.9) gives this inverse 
power as Q/2 - n. From (A2.5) we see that 

(A2.10) 

Hence logarithmic terms cannot be produced for Vi # 0, which is the case for the 
graphs under consideration. When V ,  = 0, logarithmic terms can appear. This corre- 
sponds to graphs having (0) vertex insertions only. Let us also mention that (A2.10) 
also holds for those graphs having 0 insertions only, if they are regulated by A. This 
implies that diagrams (A2.3) and (A2.4) with such insertions are also finite which 
agrees with our explicit calculations (see tables 1 and 2). 

Now we consider the situation for L a 2  loops. Here we have to remember that 
the Lth-order, (L- 1)th order counterterm insertions are present which change the 
naive power counting rules made from vertices in the regularised but unrenormalised 
theory. However it is easy to see that they are changed in as much as certain graphs 
with insertions of ln(A/p) counterterms are divergent with respect to E. These graphs 
to the Lth loop order are just those &-divergent one-loop diagrams with (L- 1)th-order 
A counterterm insertions. There will also be diagrams with E counterterm insertions. 
These are rendered E finite as can be seen by considering power counting in the 

Q/2 - n = aLax - C V ,  - n. 
1 
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presence of E counterterms. A similar phenomenon occurs for PV secondary regularisa- 
tion [4]. One would naively think that by subtracting off the subdivergences of a graph 
by the inclusion of such counterterms that the remaining overall divergence is indepen- 
dent of the subdivergences, i.e. an exact cancellation has taken place between the 
counterterm and subdivergence. The worst that may happen if such a cancellation 
does not take place (even though the subdivergence may be removed) is the appearance 
of non-local so-called overlapping divergences. Caswell and Kennedy [ 81 have shown 
that this does not occur in the context of dimensional regularisation with minimal 
subtraction and, although it remains to be proved whether the same is true for HCD 

regularisation, we shall take it to be the case. Hidden in this last assumption are other 
subtleties that are required to prove the absence of overlapping divergences. The most 
important of these is that Weinberg's convergence theorem [9] holds for a renormalisa- 
tion scheme involving minimal subtraction via counterterm insertions into the 
Lagrangian. In the original proof [lo] Weinberg used the R operation of Bogoliubov 
and Parasiuk [ 101 to remove completely integrals associated with the subdivergence 
of a given graph, whereas in minimal subtraction one is cancelling only the pole part 
against a counterterm insertion [8]. 

The convergence theorem tells us that with the removal of all subdivergences, a 
graph r is absolutely convergent (in Euclidean space) if the degree of divergence S(T) 
is <O, i.e. if its overall divergence is zero. To show that the /3 function is unchanged 
by graphs having an arbitrary (>O) number of 0 insertions we will therefore only 
concern ourselves with proving that their overall divergences vanish. We will take it 
that the counterterm graphs do their intended job and cancel all subdivergences without 
introducing any new spurious infinities, as is required by Weinberg's theorem. 

Overall divergences occur when all the internal momentum of a graph become 
large and it is to these regions of momentum space that we will be interested in from 
now on. We want to know the overall divergence of a subtracted L-loop graph R(I'J, 
where R is defined as 

R(r,) = rL- T(r,) ('42.11) 

where in (A2.11), T r  is the unrenormalised value of an L-loop graph and T is some 
subtraction operator (in our case minimal subtraction) that removes all subdivergences. 
In our case T(T,) consists of all the Lth order counterterm graphs to r,. It will be 
useful in what follows to consider separating the set of graphs { rL ,  T(T,)} into those 
whose overall divergence is regularised by A and those by E. Consider first the former 
case and denote the set of graphs by {I"")}, 1 being the number of loops. Power 
counting and gauge invariance gives the A dependence of these graphs to be that of 
(A2.6). In this case the functions H, g, and g2 will be non-linear in the Feynman 
parameters. We can imagine computing the l loops (for a given 1 )  of rj") one at a 
time and in doing so the X,, dependence of H is seen to come from translations of 
loop momenta. This allows us to factorise the X ,  dependence of H as 

\ 

(A2.12) 

In (A2.12), U, is a linear function of the Feynman parameters {X,,,}.  The number NI 
measures the maximum number of loop momentum factors in the numerator of the 
lth-loop integral. The number of independent parameters {Xa,} entering the expression 
(A2.12) is bounded above by $Pi ( I I ) i  where is the generalisation of the previously 
defined I ,  to the Ith-loop subgraph. 
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We also find a factorisable form of g, at 1 loops 

(A2.13) 

where in (A2.13) gf (X , , )  are linear functions of the parameters ( X , , , )  entering the Zth 
loop; a ;  s 5PiIl, for all 1. The number QI in (A2.13) is again the generalisation of (A2.5). 
The reason why we only require bounds on the parameters a ;  is because any logarithmic 
divergence that emerges from integration over all the Feynman parameters must appear 
when (A2.12) is lowest order in X,,,  and when there are a maximum number of X,, 
in g f  of (A2.13). Consequently for the purposes of determining the overall behaviour 
of the I-loop graph as A + m  we need only consider 

dX, . . . dx, j [gf (x , j ) l -Q”2~. . , , (~) .  (A2.14) 

In (A2.14) a ;  takes on its maximum value iPiIfi. Logarithmic divergences may appear 
if 

(A2.15) 

From ( A 2 3  we see that this equality is impossible to reach for V ,  # 0. We can conclude 
that for any I-loop diagram r{*) having 0 insertions (so that V ,  ZO) the limit A + c o  
is regular when all loop momenta are hard. Again we see that the equality (A2.14) 
is reached for diagrams having (0) insertions only-which correspond to those of the 
original unregularised theory. 

To complete our proof we have to consider those diagrams in the set { rL ,  T ( R , ) }  
whose overall divergence is regulated by E, denoted by {I‘j‘)}. It is clear from our 
earlier discussion in this appendix that these diagrams only occur for 1 = 1 and are 
just the one-loop &-regulated graphs with ln(A/p) counterterm insertions. As such, 
their overall divergences do not vanish but nevertheless they do not alter the P-function 
because of the same cancellation mechanism that we saw appearing in the explicit 
calculations of 0 2. 

Hence we can conclude that for L 2 2 loops, graphs having one or more 0 insertion 
do not contribute to the P function. 

;or = f PJ,, . 
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